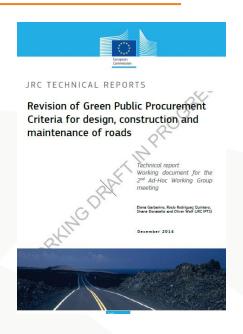


Life-Cycle Engineering for Roads (LCE4ROADS / ECOLABEL)

Fatma Orhan

Turkish General Directorate of Highways (KGM) LCE4ROADS SC member


What is a Green Public Procurement?

How to implement it for the design, construction and maintenance of roads?

GPP and Certification Systems

EU-JRC: Draft of the Green
Public Procurement Criteria for
Design, Construction and
Maintenance of Roads

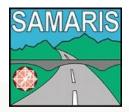
Selection criteria on the competency of the construction / maintenance / rehabilitation contractors:

"The purchasing and use of low environmental impact construction materials and verification of their performance. Supply chain management to ensure compliance with any relevant road assessment and certification systems, for example CEEQUAL or Greenroads. Experience with LCA and LCC tools";

What is a sustainable road?

Sustainability Certifications for Buildings

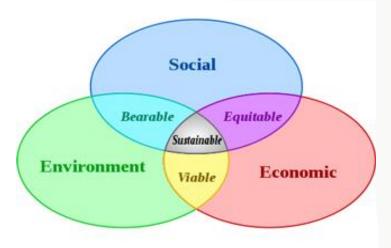
- LEED (USA)
- BREEAM (UK)
- GREEN (GBC)
- DGNB (Germany)
- HQE (France)
- SBTool (Canada)
- Open House
- Ecohomes
- etc.



Existing Evaluation Systems for Roads in Europe

CO₂Emission REduction in roAd Lifecycles

...what's about in the USA?



Gaps...barriers to innovation and implementation

Not covering all phases

...or all sustainability pillars

Gaps...barriers to innovation and implementation

- No Standards or regulations:
 Framework for sustainability assessment under development in CEN/TC350.
- No Regional peculiarities
 Energy mix (key for LCA), different regulations and testing methods,
- Road Authorities do not like to compare roads
- Costs

What are we developing?

"Life Cycle Engineering approach to develop a novel EU-harmonized sustainability certification system for cost-effective, safer and greener road infrastructures"

....AS PART OF THE FORMER FP7 ECOLABEL PROJECT

In LCE4ROADS we are developing a new, holistic and EU-harmonised Sustainability Certification System for roads, integrating by a Life Cycle Engineering (LCE) all the sustainability pillars and road phases.

- Useful for contractors, engineering companies.
- Useful for NRAs
- Useful to foster GPP and PPI
- Useful for users, society and the environment
- Useful for certification bodies

ROAD
CONSTRUCTION,
MAINTENANCE OR
REHABILITATION PROJECT

Certificate

1. Light 2. Complete

Requirement 1 Requirement 1

Requirement 2 Requirement 2

E: Environmental

SE: Socio Economic

T: Technical

GREENER, SAFER AND

COST EFFECTIVE ROAD

LCE4ROADS: Main Concepts

LCE4ROADS will be <u>pavements focussed</u> (including subgrade, and not related to structures earthworks).

Targets

TEN-T network and similar types of roads.

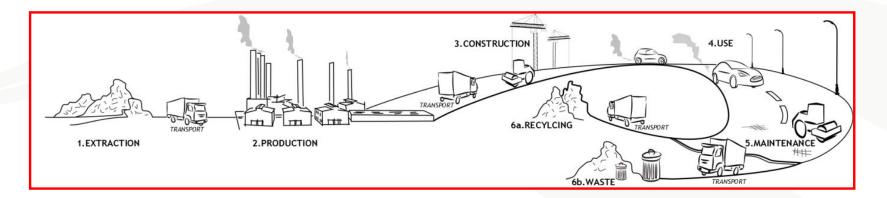
Support GPP and PPI

3 certification moments for new and existing roads

- 1 Before construction
- 2 After construction
- 3 During the operation phase.
 NRAs will fix periodicity.

Phases

- Planning
- Design
- Construction
- Operation
- Maintenance
- EOL


Domains/Sust. pillars

- Technical
- Environmental
- Social
- Economical

LCE4ROADS: Boundary Conditions

The LCE4ROADS methodology assesses the sustainability of a road project over its life time. All life cycle stages are considered (design and planning, construction, operation, maintenance and end of life).

Stage 1: extraction of raw materials (\rightarrow A1)

Stage 2: production of road products (→A2 & A3)

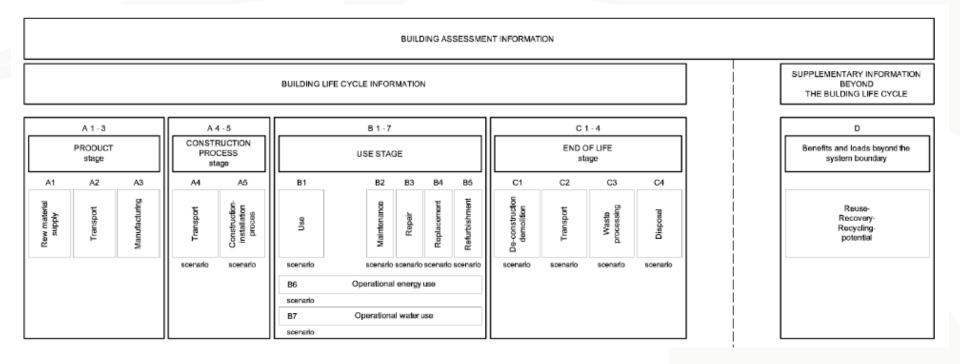
Stage 3: construction of the road (→ A4 & A5)

Stage 4: use of the road (→ B1 + B6&7). Discuss about operational energy and

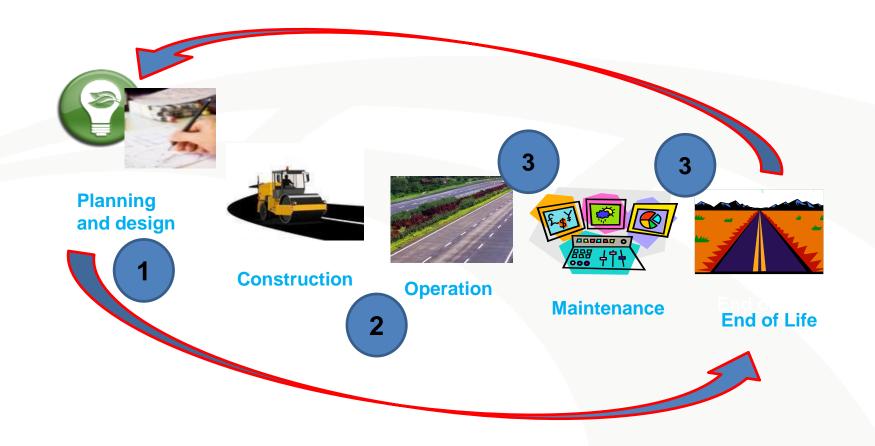
water (B6 and B7)

Stage 5: maintenance of the road (→ B2 till B5)

Stage 6: end-of-life of the road (waste or recycling → C1-C4 or D)



LCE4ROADS: Boundary Conditions


EN 15804+A1

Sustainability of construction works - Environmental product declarations - Core rules for the product category of construction products

Product Stages

LCE4ROADS: Certification Stages

There will be **three stages** when the certificate can be awarded.

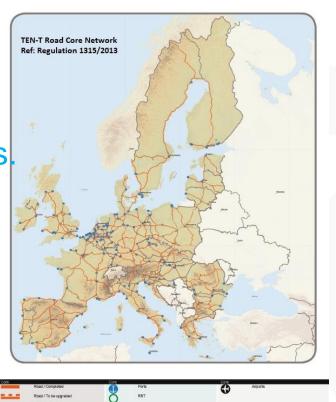
- Firstly, a certificate can be awarded during the planning and design stages, based on information available at that phase.
- After construction, the certificate can be also awarded and, finally,
- During operation phase, the certificate can be also achieved in order to check the real performances and level of service of the road infrastructure.

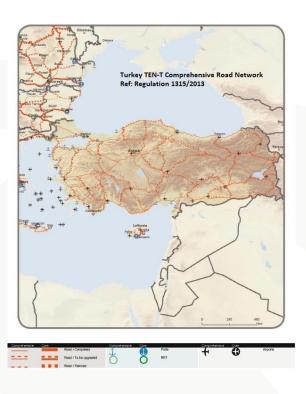
CERTIFICA	TION STAGES	
CS1	CS2	CS3
Planning and design	Construction	Operation

LCE4ROADS: Certification Scope

✓ Certification requirements (both qualitative and quantitative) will be defined.

Light certificate covering a **minimum range** of requirements.


Complete certificate covering the **whole range** of requirements


✓ Regional peculiarities will be included (energy mix, regulations, etc.), to facilitate the deployment of LCE4ROADS in the different EU State Members

LCE4ROADS: Certification Scope

✓ Tailor made for TEN-T network and similar roads.

✓EU harmonized safety audits and inspections: (Directive 2008/96/EC) to be considered.

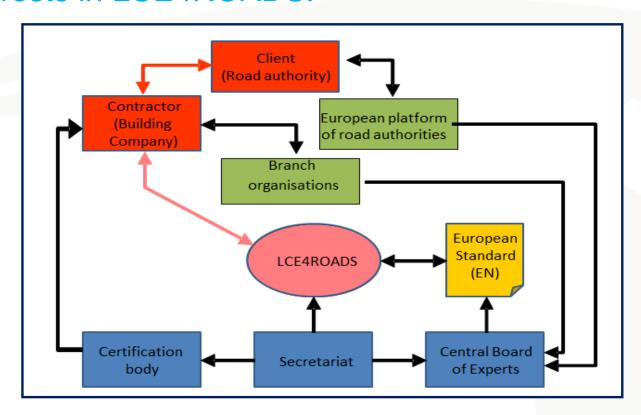
Indicators accepted at International Level

- ✓ Green Public Procurement Critera JRC (EC)
- ✓ ISO Standards for LCA (14040-44) & for LCC (15686) indicators
- LCA: GWP (kg eq. CO₂); POCP (kg eq. C₂H₄); AP (kg eq. SO₂); EI (kg eq. (PO4³⁻);
 EP (kg eq. 1.4-eq DCB); TP (kg eq. 1.4-eq DCB)
- <u>LCC:</u> natural resources costs; road construction costs; user costs; small maintenance costs; winter maintenance costs; deconstruction, landfilling, etc.
- ✓ Aligned with CEN/TC 350 Sustainability in construction works and TC 227 Road materials:
- EN 15804 for construction products (EPD)
- CEN/TC 350/WG6 for civil engineering works
- CEN Workshop Agreement (CWA) to be proposed in the next TC227 meeting.
- **✓** Others under development:

Qualitative indicators, i.e. addition of innovative materials, processes or technologies, resilience to climate change, etc.

Indicators

*		
		Virgin aggregate consumption, ton
	<u>_e</u>	Bituminous binder consumption, ton
	Material	Recycled material used, ton
	ž	Material suspected to be recycled, %
<u>~</u>		Low temperature asphalt, ton
<u> </u>		Energy demand
ΙĔΙ	gc	Global warming (climate change)
	흍	Photo-oxidant formation - Photochemical Ozone Creation Potential (POCP)
Environmental	.	Acidification Potential (AP)
2	II.	Eutrophication Potential (EP)
iii l	Environmental Impact	Abiotic Depletion Potential (ADP)
	uo.	Abiotic Depletion – fossil fuel
	2	Toxicity (T)
	ă l	Ecotoxicity (ET)
		Biodiversity
	st	Discount rate
.≌	Cost	Initial cost
IĘ	ς	Maintenance cost
≗	Agency	m ² cost
Economic		Salvage value
ш	User Cost	User cost and work zone user cost (under the Life Cycle Cost perspective)
	၂ ြီ ပိ	User cost (due to increase in IRI)


Indicators

Social	ety Comfort	Noise (habitant / wild life affection) Tire-road contact noise (on the pavement surface) International Roughness Index (IRI) Rut depth, mm Friction (skid resistance / macrotexture) Traffic assidents rate (under LCC parapastive)
, , , , , , , , , , , , , , , , , , ,		Traffic accidents rate (under LCC perspective) Safety audits and safety inspections (Directive 2008/96/EC) fic congestion mitigation plan finitigation plan
ial	Design	Analysis period Number of rehabilitation Maintenance and rehabilitation plan (M&R)
Technical	Structural	Pavement effective modulus Subgrade modulus Maximum allowable roughness, m/km Minimum allowable skid resistance Maximum allowable rut depth, mm Resilience to climate change

Initial Organization Structure

The coordination between all the stakeholders with interests in LCE4ROADS:

- various organisations involved in the procedure to assign the certificate.

Example of Draft LCE4ROADS Certificate

LCE4ROADS CERTIFICATE (COMPLETE)

OPERATIONAL PHASE CERTIFICATE NUMBER: 1

Date: 28.07.2019

		ROAD IDENT	TIF
	Road Name : Gerede-Kızılcahamam Yol	u	
	Road Class	State Road	
Road	KKNo	750-06	
ž	Kilometre	84+860-86+360	
	Number of traffic lane	2x2	
	Pavement width in one direction	11,3 m	
	Year of opening to traffic	2011	

F	ICATIO	N	
	Traffic and Climate	Annual average daily traffic	4428
	ic a nat	Percentage of heavy vehicle	59
	aff	Annual average frost days	119
	F	Annual average rainy days	104
	er 1	SMA	4
	-aye	Binder	12
	ent l	CIPR Bituminous base	25
	Pavement Layer Thickness, cm	Granular Base	20
	Pa	Subbase	20

SUSTAINIBILTY DOMAINS

	ENVIRONMENTAL	
=	Virgin aggregate consumption	20736
Material	Material suspected to be recycled	50
Лat	Low temperature asphalt, %	13951
_	Energy demand	2,06E+00
	Global warming (climate change)	1,32E+06
	Photochemical Ozone Creation (POCP)	3,96E+02
	Acidification Potential (AP)	9,73E+03
act	Eutrophication Potential (EP)	1,65E+03
Impact	Abiotic Depletion Potential (ADP)	1,79E+04
_	Abiotic Depletion – fossil fuel	9,73E+03
	Toxicity (T)	-
	Ecotoxicity (ET)	-

	SOCIAL	
	Skid resistance	SN ₂
	Traffic accident rate	-
Safety	Safety audits &safety inspections (Directive 2008/96EC)	No
Safe	Noise (habitant affection)	-
	Noise (wild life affection)	-
	Tire-road contact noise, dBA	96
	IRI, m/km	1,05
	Ruth depth, mm	4
Traffic	congestion mitigation plan	No
Dust r	nitigation plan	No
	•	•

TECHNICAL	
Analysis period / Life span, years	36
Number of rehabilitation	2
Maintenance and rehabilitation plan(M&R)	Yes
Pavement effective modulus, MPa	1005
Subgrade modulus, MPa	100
Maximum allowable IRI, m/km	3,5
Minimum allowable skid resistance	0,3
Maximum allowable rut depth, mm	30

	ECONOMICAL	
	ınt Rate, %	10
Costs,	Initial Cost	68,6
Š	Maintenance cost	22,1
E ≆	Rehabilitation cost	65,1
96	m² cost	0,04
크 호	Salvage value	60,9
nua	User cost and Work zone cost	13076,9
Annual Uniform C (x100o €)	User cost (due to increase in IRI)	358,4

entral Asia Regional Congress anbul, September 15 - 18, 2015

Our Team

No	Participant	Country
1	ACCIONA	Spain
2	BASt	Germany
3	CIRCE	Spain
4	CHALMERS	Sweden
5	ERF	Belgium
6	FEHRL	Belgium
7	IECA	Spain
8	IFSTTAR	France
9	TNO	Netherlands
10	KGM	Turkey
11	AENOR	Spain
12	INVESTEKO	Poland
13	NAPE SA	Poland

Time Schedule

M24, Oct 2015

	1	2 3	4 5	6 7 8	9 10 1	1 12	13 14 15	16 1	7 18	19 2	0 21	22	23 24	4 25	26	27 2	8 2	9 30	31	32 3	34	35
	20	013			2014	4					20)15		Г					2	016		
	10 :	11 12	1 2	3 4 5	6 7	8 9	10 11 12	1	2 3	4	5 6	7	8 9	10	11	12	1	2 3	4	5	6 7	8
NP1: SETTING THE SCENE: Labelling approaches and Key Performance Indicators																						
NP2: Ecolabelling methodology for road products and infrastructures														ı								
NP3: Assessment against the ECOLABEL methodology of road products and infrastructures																						
NP4: Development of the ECOLABEL software tool														L								
NP5: Validation of the ECOLABEL methodology and the associated software														L		1						
NP6: ECOLABEL guide and implementation strategies																1						
NP7: Communication, dissemination, standardisation and exploitation																						
NP8: Administrative management																						

Main Outputs

- ✓ LCE4ROADS certification system guide.
- ✓ Development of an innovative and friendly software tool.
- ✓ <u>Implementation strategies</u> to foster Green Public Procurement all around Europe.
- ✓ Pre-normative research activities towards standardization. Creating a CWA (CEN Workshop Agreement)
- ✓ Exploitation plan for the project results. <u>Certification</u> system, bodies and authorized entities.

Main Outputs

In less than 24 months we intend to demonstrate that LCE4ROADS is around TRL 7: integrated pilot system demostrated

TRL 9	System ready for full scale deployment
TRL 8	System incorporated in commercial design
TRL 7	Integrated pilot system demonstrated
TRL 6	Prototype system verified
TRL 5	Laboratory testing of integrated system
TRL 4	Laboratory testing of prototype component or process
TRL 3	Critical function: proof of concept established
TRL 2	Technology concept and/or application formulated
TRL 1	Basic principles observed and reported

Figure: NASA technology readiness levels

Follow us: www.lce4roads.eu

