
The research leading to the results has received funding from the European Community's Seventh Framework Programme (FP7/2008-2013) under grant agreement n.o.618109

LCE4 ROADS

LCE4ROADS Cases Studies

Fatma ORHAN Civil Engineer, MSc.,Division Director of EU & Foreign Relations Turkish General Directorate of Highways (KGM) LCE4ROADS SC member

LCE4ROADS FINAL EVENT – 17th November 2016, Brussels www.lce4roads.eu

LCE4 ROADS

Real road cases studies have been carried out in both WP3&WP5

TASK 3.3: Analysis and evaluation of road infrastructures LCE4 ROADS

Objective

The aim of this task is to analyse and evaluate the construction, maintenance, rehabilitation of road pavements against the LCE4ROARDS methodology. **(Deliverable D3.2 Assessment against the LCE4ROADS methodology of a road case study**) has been prepared.

The approach consists of two phases:

- first, a small case study is investigated in order to develop a first approach for any case study assessment.
- Second, a larger case study, has been performed by KGM

TASK 3.3: Analysis and evaluation of road infrastructures 📝

Small Case study – Asphalt Road – Project Rotterdam

Location of the Rotterdam project.

	Layer	Material	Thickness (m)	Mass (kg)
1	Top layer	Asphalt type W	0.025	727000
	Adhesive layer	Bituminous layer	n/a	4838
}	Sub layer	AC Base	0.06	1818629
Name of Street, Street	Adhesive layer	Bituminous layer	n/a	4838
	Base layer	AC Bind	0.07	2121734
	Scattering	Sand	n/a	15000

Project dimensions	
Length (m):	1728
Number of lanes:	2
Width of lanes (m):	3.5
Emergency lane (m):	0
Total width (m)	7
Total surface (m ² – calculated from information above):	12096

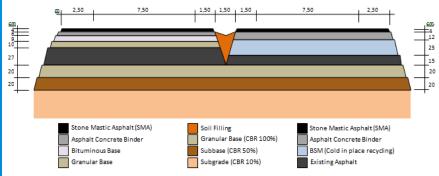
Project road profile

www.lce4roads.eu

Summary of KPIs results for Rotterdam project case

ustainability pillar	Торіс	Indicator	Data needed (examples: see next sheet)	<u># Sc</u>	ore Unit	
	Durability	Period of service	Project life time	1	36 years	
	Durability	Structural index #1	IRI	2	5mm/m	
echnical	Durability	Structural index #2	Rut depth	3	2mm	
	Skid resistance	Skid resistance	Skid resistance can be measured in several ways and is	4	5m/s2	
			expressed in deceleration (m/s ²)			
		LCA-indicators:				
		Abiotic depletion, excl energy carriers		5	3,08E+00kg Sb eq	
		Abiotic depletion, energy carriers		6	1,33E+04kg Sb eq	
		Acidification		7	6,11E+03kg SO ₂ eq	
		Eutrophication		á	9,65E+02kg PO4 ³⁻ eq	
		•		0		
		Global warming (GWP100)	All amounts of materials used and processes needed to	9	9,78E+05kg CO2 eq	
	Environmental impacts	Ozone layer depletion (ODP)	produce, apply and dispose materials over the project life	10	3,56E-01kg CFC-11 eq	
		Human toxicity	time; LCA database needed	11	3,89E+05kg 1,4-DB eq	
		Fresh water aquatic ecotox.		12	1,22E+04kg 1,4-DB eq	
nvironmental		Fresh water sediment ecotoxicity		13	2,87E+04kg 1,4-DB eq	
		Marine aquatic ecotoxicity		14	1,17E+08kg 1,4-DB eq	
		Marine sediment ecotoxicity		15	9,98E+07kg 1,4-DB eq	
		Terrestrial ecotoxicity		16	2,85E+03kg 1,4-DB eq	
		Photochemical oxidation		17	1,33E+03kg C2H4	
	Embodied Energy	MJ	Same as for LCA	18	unknownMJ	
	Resource efficiency	% recycled materials	% recycled of raw materials	19	50%	
	Resource efficiency	% recyclability of waste	% recyclability of waste streams	20	0%	
	Resource enterency	virceyclability of waste		21	unknown	
	Biodiversity	Biodiversity index	Number of organisms present at the project location			
		·	Number of species present at the project location	22	unknown	
	Total costs	Life cycle costs	All amounts of materials used and processes needed to	23	€€	
conomic			produce, apply and dispose materials over the project life		673.700	
			time; also use & maintenance costs; cost database needed;			
			discount factor + inflation rate needed.			
			People that are exposed to a physical level of 55 dB(A) during	24	unknown	
	Noise	Noise exposure to number of people	den-period (day-evening-night)			
		prosection and the propriet	People that are exposed to a physical level superior to 50	25	unknown	
			dB(A) during night-period			
ocial	Comfort	IRI/macrotexture	IRI of top layer	26	5mm/m	
	Safety	Risk of accidents	Amount of accidents (during projetc life time)	27	unknown	
	Hindrance	Lost travel hours	Traffic intensity, speed limit, maintance planning (week or	28	240300 euros	
			weekend, duration in days and hours/day), type of road			
			block, etc; hindrance model needed			
			Vulnerability to sea level increase	29	unknown%	1
	Vulnerability	Probability (%)	Vulnerability to sea extreme temperatures	30	unknown%	
			Vulnerability to extreme floods	31	unknown%	
			Project information: has there been measures taken to	32	no	
			protect against sea level increase?	52	no	
limate resilience				22	20	
innate resilience	Measures	Measures taken (yes/no & description)	Project information: has there been measures taken to	33	no	
			protect against sea extreme temperatures?	24		
			Project information: has there been measures taken to	34	no	
	Expenditures	% of project budget	protect against extreme floods? % of budget allocated/reserved/spent on climate resilience	35	0%	

Big Case study - Asphalt Road Ankara – İstanbul State Road



General information

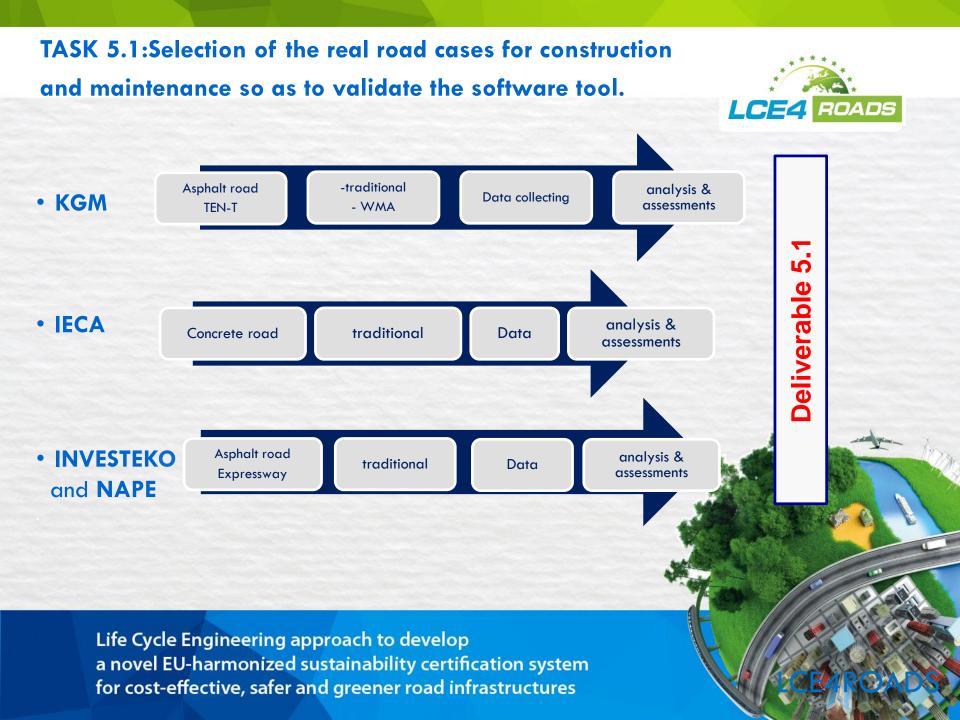
Project dimensions	
Length (m):	3500
Number of lanes:	2
Width of lanes (m):	3,75
Emergency lane (m):	2,3
Total width (m):	11,3
Total surface area (m²):	39550

SMA Wearing Course	4 cm
AC Binder course	6 cm
Regulating Binder	avg. 6 cm
Base course stabilized with bitumen/Cold-recycling in place	25 cm

www.lce4roads.eu

Summary of KPIs results for Turkish road case

	_ .										<u> </u>
Domain	Торіс	Indicator	<i>"</i>	Value	Unit	Domain	Торіс	Indicator	Type of data needed	Value	Unit
	Durability Durability	Period of service Structural index #1	Project life time IRI, ASTM E950		years mm/m		Total costs	Life cycle costs	All amounts of materials used and processes		
Technical	Durability	Structural index #2	Rut depth,	,	mm	ic			needed to produce, apply and dispose materials over the project life time; also use		
schr	,		EN ISO 13036-8/7			Economic			& maintenance costs; cost database needed;		
Ĕ	Safety	Skid resistance	Skid resistance,	30	SN	ECO			discount factor + inflation rate needed.		
		LCA indicators	ASTM E274/E274M								
		LCA-indicators: Abiotic depletion, excluding		3,08E+00	kg Shieq				People that are exposed to a physical level of		
		energy carriers		3,002.00	NB 35 CY			Noise exposure to	55 dB(A) during den-period (day-evening-	wn	
		Abiotic depletion, energy		1,33E+04	kg Sb eq		Noise	number of people	night) People that are exposed to a physical level	unkno	
		carriers							superior to 50 dB(A) during night-period	wn	
		Acidification			kg SO ₂ eq kg PO ₄ ³⁻ eq	_	Comfort	IRI/macrotexture	IRI of top layer	25	mm/m
		Eutrophication		9,05E+02	$kg PO_4^{\circ} eq$	Social			Amount of accidents (during project life time)		
		Global warming (GWP100)		9,78E+05	kg CO ₂ eq	S	Safety	Risk of accidents	Amount of accidents (during project life time)	unkno wn	
		Ozone layer depletion (ODP)	All amounts of materials	3,56E-01	kg CFC-11		Hindrance	Lost travel hours	Traffic intensity, speed limit, maintenance		€
			used and processes needed		eq				planning (week or weekend, duration in days		
	Environmental	Human toxicity	to produce, apply and	3,89E+05	kg 1,4-DB				and hours/day), type of road block, etc.; hindrance model needed		
	impacts	Fresh water aquatic ecotox.	dispose materials over the project life time; LCA	1 22E±04	eq kg 1,4-DB						
			database needed	1,221+04	eq				Vulnerability to sea level increase	unkno wn	%
_		Fresh water sediment		2,87E+04	kg 1,4-DB				Vulnerability to sea extreme temperatures	unkno	%
enta		ecotoxicity			eq		Vulnerability	Probability (%)	· · · · · · · · · · · · · · · · · · ·	wn	
Environmental		Marine aquatic ecotoxicity		1,17E+08	kg 1,4-DB				Vulnerability to extreme floods	unkno	%
Jvire		Marine sediment ecotoxicity		9,98E+07	kg 1,4-DB	g			Project information: has there been a	wn no	
ū					eq	llien			measure taken to protect against sea level	110	
		Terrestrial ecotoxicity		2,85E+03	kg 1,4-DB	resi			increase?		
		Photochemical oxidation		1,33E+03	eq kg С H	Climate resilience			Project information: has there been a	no	
	Embodied	MJ	Same as for LCA	4,09E+07		Clin	Measures	(yes/no & description)	measure taken to protect against sea extreme temperatures?		
	Energy	UIVI	Same as for LCA	4,092+07	IVIJ			descriptiony	Project information: has there been a	no	
	Resource	% recycled materials	% recycled of raw materials	50%					measure taken to protect against extreme		
	efficiency								floods?		
	Resource efficiency	% recyclability of waste	% recyclability of waste streams	0%			Expenditures	% of project budget	% of budget allocated/reserved/spent on climate resilience	0%	
	enterency		Number of organisms	unknown							
			present at the project								
	Biodiversity	Biodiversity index	location								
	,		Number of species present at the project location	unknown							
			at the project location								


TASK 5.1:Selection of the real road cases for construction and maintenance so as to validate the software tool.

Deliverable 5.1 Real Road Cases Selection and Real Data Analysis for the Validation of the LCE4ROADS Methodology and Software Tool

Objective

The main objective is to select real road project cases to obtain reliable results for the necessary evaluation and comparison while covering the widest European area as possible and properly validate the LCE4ROADS methodology and associated software tool.

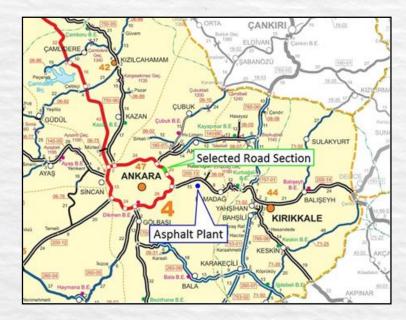
TASK 5.1:Selection of the real road cases for construction

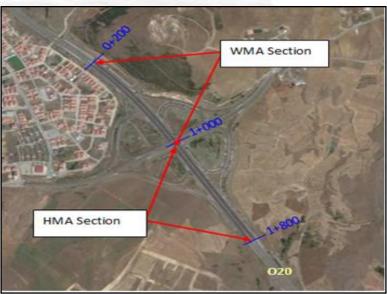
and maintenance so as to validate the software tool.

European area C×

瀧

Aiming at covering the widest European area as possible and the most representatives of the widely implemented road infrastructures, KGM, IECA, **INVESTEKO** and **NAPE** have selected road cases from their road network: Turkey, Spain and Poland, respectively.


DELIVERABLE 5.1



Information on Selected Road Cases

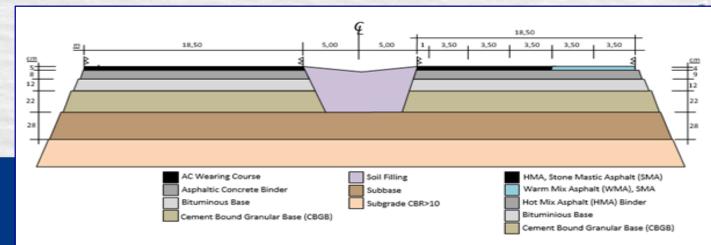
Partner	Country	Road Type	Road Network	Pavement Type	Length, m	Mixture Type
КСМ	Turkey	Motorway, 2x4	TEN-T	Asphalt	800	Traditional
кдм	Turkey	Motorway, 2x4	TEN-T	Asphalt	800	WMA
IECA	Spain	Highway, 2x4	National road	Concrete	912	Traditional
INVESTEKO, NAPE	Poland	Expressway	National road	Asphalt	15600	Traditional

Length of the Ankara ring road	110 km
Construction, year	1997
Rehabilitation, year	June 2015
Length of the selected sections	800+800m

Summary of the scope of certification

Type of certificate	Complete version
Certification stage	After construction, CS2
LCE stages assessed	Extraction, production, construction, maintenance, end-of-life
LCE stages omitted	Use stage is omitted due to lack of information.
Data collection	All data during the construction has been collected. And after opening to traffic, IRI and skid resistance measurement have been taken
Relevant KPIs	Environmental, economic, social, technical

Data for LCA analysis – WMA road section

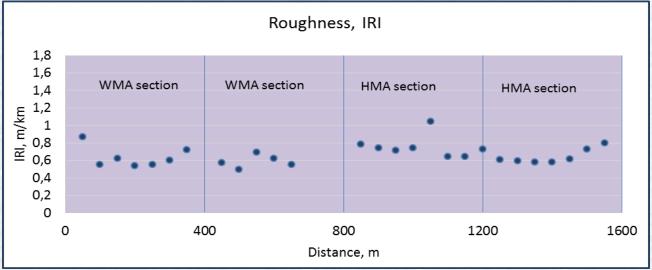

1. Road S	1. Road Section Information					
Km	020/11/200-020/11/1000					
Length	800 m					
Paved Cross Section, 7m	3,5m emergency lane + 3,5m right lane					
Number of Lane	2					

2. Amount and Cost of Pavement & Pavement Layer Thickness

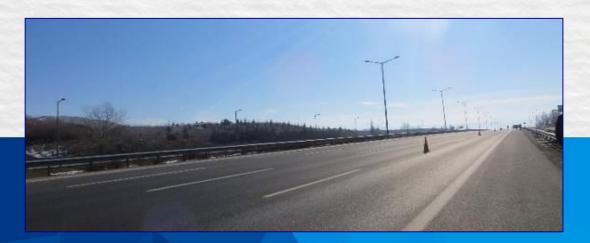
Type of Layer	Thickness	Amount of mix. (ton)	Opt. bitumen (%)	Unit Price
WMA, SMA Wearing Course	4 cm	538	7,5	
AC Binder Course	9 cm	1210	3,9	
Milling of old asphalt	13 cm	1747	-	1
Total emulsion amount for tack coat (ton)		2,80	1	

Data for LCA analysis – HMA road section

1. Road	Section Informa	ntion								
Km	020/11/1000 - 020/11/1800									
Length	800 m	0 m								
Paved Cross 3,5m emergency lane + 3,5m right lane										
Number of Lane	2									
2. Amou	Int and Cost of P	Pavement & Pavemen	t Layer Thickness							
Type of	Laver	Thickness	Amount of mix.	Opt. bitumen	Unit Price					
		Constant and the	(ton)	(%)						
HMA, SMA Weari	ng Course	4 cm	538	7,5						
AC Binder Course		9 cm	1210	3,9						
Milling of old asphalt		13 cm	1747	-						
Total emulsion a	mount for		2.80							



tack coat (ton)


Technical KPIs results for Turkish road cases

Roughness measurement of road cases

Measurements on both WMA and HMA sections have been taken on the SMA surface layer in February 2016.

Average roughness of WMA and HMA sections

In Spain, the concrete road between Vic and Ripoll has been selected by **IECA** as a real case study of a concrete road. The road is divided road into four lanes for each direction (2X4). **IECA** has selected a concrete road case with two road sections,

- inside a tunnel (676 m) and
- an open-pit section of 236 m long.

Both sections are a two-layer concrete pavement with exposed aggregate texture.

D5.1 - Spanish Road Case Study - Cement-based Road 🧈

LCE4 ROADS

General information about Spanish road case

Geometry of the road	
Section length (m)	912
Number of lanes in one direction (without emergency	
lane)	2
Lane width (m):	3,5
Lane width of the emergency lane (m):	2,5
Total pavement width in one direction (m):	10,5
Total pavement surface [m2]	9576

Pavement design]	
Layers	Material - name	Thickness (m)
Wearing course	Concrete wearing course	0,05
Base course	concrete base course	0,2
Subbase course	Mixture AC20	0,05
Subgrade course	Stabilized soil	0,25

D5.1 - Spanish Road Case Study - Cement-based Road

Geometry of the road	
Section length (m)	912
Number of lanes in one direction (without emergency	
lane)	2
Lane width (m):	3,5
Lane width of the emergency lane (m):	2,5
Total pavement width in one direction (m):	10,5
Total pavement surface [m2]	9576

Pavement design	4	
Layers	Material - name	Thickness (m)
Wearing course	Concrete wearing course	0,05
Base course	concrete base course	0,2
Subbase course	Mixture AC20	0,05
Subgrade course	Stabilized soil	0,25

D5.1 - Spanish Road Case Study - Cement-based Road 🥩

Technical KPIs results for Spanish road case

IRI measurement

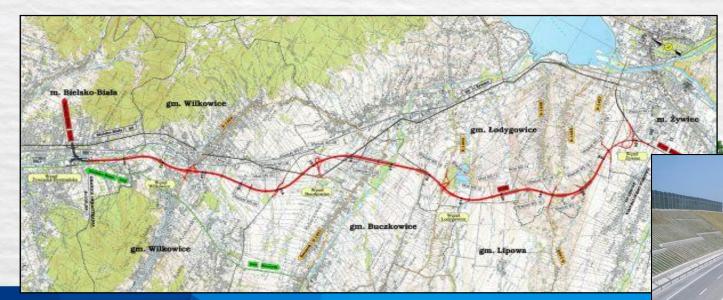
% of hectometres	Right lane			Left lane		
whose IRI value is under:	IRI left	IRI right	IRI middle	IRI left	IRI right	IRI middle
<1,5	50%	80%	70%	50%	50%	50%
<1,8	70%	90%	80%	70%	70%	70%
<2	80%	100	100%	90%	90%	100%
<2,5	100%	100	100%	100%	100%	100%
<3	100%	100	100%	100%	100%	100%
<3,5	100%	100	100%	100%	100%	100%

Transverse friction coefficient values

LCE4 ROADS

Transverse friction coefficient (average value)	Right lane	Left lane
% of total length	77,0	75,6
CRT < 60	0 %	0 %
60 > CRT > 65	0 %	0 %
CRT > 65	100 %	100 %

Noise measurement


(Close-Proximity Method values at 80 and 100 km/h)

Strotch	Characteristics	Noise	e dBA
Stretch	Characteristics	80 Km/h	100 Km/h
1	Inside tunnel 1 (297 m long)	nnel 1 (297 m long) 99 103	
2	Inside tunnel 2 (379 m long)	99	103
3	Open-pit	99	102

The selected case study is an expressway section of 15,6 km situated in the Southern Poland, Silesia Region. It is a pass between two important cities Bielsko-Biala and Zywiec, lying in the mountain range of Silesia Beskids. Poland is generally a flat region, with only little part of mountainous terrain, therefore this road situation may be considered as typical. However, LCE4ROADS methodology focuses only on pavements, and pavement used in this project is a typical construction for Poland – asphalt pavement.

Geometry of the road

Geometry of the road	
Section length (m)	15 600
Number of lanes in one direction (without emergency lane)	2
Lane width (m):	3.5
Lane width of the emergency lane (m):	2.5
Total pavement width in one direction (m):	10.5
Total pavement surface [m2]	327600

Waste generated on the construction site

	Name of the waste	Quantity [ton]	Hazardous waste [Yes/No]	Procedures related to the waste generated on construction site (standard)
1	Tetrachloroethylene + asphalt (residue after the extraction) - waste code 160305	0.0053	Yes	Waste act of 14 December 2012 (2013-2015)
2	Packaging containing hazardous substances - waste code 150110	0.08	Yes	Waste act of 14 December 2012 (2013-2015)
3	Concrete waste and concrete rubble from demolitions and renovations - waste code 170101	1785.1	No	Waste act of 14 December 2012 (2013-2015)
4	Iron and steel - waste code 170405	23.774	No	Waste act of 14 December 2012 (2013-2015)
5	Construction materials containing asbestos - waste code 170505	4.53	Yes	Waste act of 14 December 2012 (2013-2015)
6	Mixed waste from construction and demolition other than those mentioned in the waste code 170901, 170902, 170 903 - waste code 170904	5650	No	Waste act of 14 December 2012 (2013-2015)
7	Municipal waste not listed in other subgroups - waste code 200399	20.72	No	Waste act of 14 December 2012 (2013-2015)
8	Insulation materials other than those mentioned in the waste code 170602 and 170603 - waste code 170604	2.084	No	Waste act of 14 December 2012 (2013-2015)
9	Wood	6.1	No	Waste act of 14 December 2012 (2013-2015)
10	Mixed packaging waste - waste code 150106	13.6	No	Waste act of 14 December 2012 (2013-2015)

Economic KPIs results for Polish road case

Cost of the materials used in the construction of each layer

Layer	Material - name	Thickness (m)	Density (kg/m3)	Cost [PLN/m2]
Wearing course	bituminous mix SMA 11 45/80-55	0.04	2498	31.04
Binder course	bituminous mix AC WMS 16 25/55-60	0.08	2540	50.39
Base course	bituminous mix AC WMS 16 Bitrex 35/50	0.14	2420	75.37
Subbase	mixture of crushed aggregate 0/31,5 mm	0.3	2720	20.87
Antifrost layer	mixture of natural aggregate 0,31,5 mm	0.3		22.78
Improved subgrade layer (m2)	ash-slag mixture UTEX BP 5	0.15	1490	8.08
Other layers	lime stabilised subgrade at depth of 0,5 m	0.5	not applicable	13.35

Conclusion

- KGM, TNO, INVESTEKO and NAPE selected five asphalt road projects while IECA selected a concrete road project.
- In these cases studies, in accordance with the LCE4ROADS methodology and KPIs list, required data for complete certification try to collect for the selected road cases. As a result, not only data about materials, courses, transport and costs during construction but also data about pavement characteristics (IRI, skid resistance, noise, surface texture) after road construction were collected.
- It was not possible to calculate economic KPIs for all the selected real road cases. As a national road authority, only KGM could access to economic KPIs; other partners could not collect all the economic data.

Conclusion

CERTIFICATION STAGES					
CS1 CS2 CS3					
Planning and design	Construction	Operation			

Case studies are carried out for CS2, After-Construction stage.

It is thought that there would be no difficulty to collect data or to perform the necessary measurements regarding the environmental, social, economic and technical KPIs in case road authorities require the need to have a LCE certificate in their bidding contracts.

Conclusion

CERTIFICATION STAGES					
CS1	CS2	CS3			
Planning and design	Construction	Operation			

However, for the CS3, Operation stage, in case the operator is a private company, it would be possible if it is required to have LCE certificate in the contract.

If the operator is the road authority, it is thought that it would be difficult to have LCE certificate because their priority is usually the road construction and maintenance activities, especially for the countries with high workload and/or low budget.

www.lce4roads.eu

Life Cycle Engineering approach to develop a novel EU-harmonized sustainability certification system for cost-effective, safer and greener road infrastructures

forhan@kgm.gov.tr