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ABSTRACT 

This paper demonstrates the applicability of the genetic algorithm and curve shifting 

methodology to estimate resilient modulus at various stress states for subgrade soils using the 

results of triaxial resilient modulus tests. This innovative methodology is proposed as an 

alternative to conventional nonlinear constitutive relationships. Using the genetic algorithm, 

laboratory curves for different deviator stress levels at different confining pressures are 

horizontally shifted to form a final gamma distribution curve which can represent the stress-

strain behavior of subgrade soils with the corresponding predicted shift factors. Resilient 

modulus values for a given stress state can be estimated based on this curve and another 

gamma function which represents the variation of shift values for different confining stresses. 

To compare the effectiveness of these two approaches, coefficients for the Uzan constitutive 

model are also determined for each laboratory test and compared with the approach described 

in this paper. Predicted resilient modulus values from each approach are separately compared 

with Artificial Neural Network (ANN) model predictions to evaluate their efficiency and 

reliability in terms of resilient response prediction. Results of the analysis indicated that 

curve shifting methodology gives superior estimates with a coefficient of determination 14% 

higher than the Uzan model predictions when the results are evaluated with the ANN model 

outputs. Thus, although it is not a constitutive model, use of the genetic algorithm and curve 

shifting methodology is proposed as a promising technique for the evaluation of subgrade 

soils’ stress-strain dependency.        
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INTRODUCTION 

Mechanistic-empirical pavement design requires successful determination of the material 

properties that produce calculated pavement responses to match those of real pavements. 

Dynamic nature of the traffic loads must be effectively simulated in laboratory tests to 

achieve realistic performance estimates for design. Since empirical design procedures are 

based on the static properties of pavement structures that are determined by using simple 

performance tests such as California bearing ratio and soil support value, a dynamic strength 

parameter needs to be determined in order to evaluate the performance under repeated 

loading.  

Resilient modulus testing, developed by Seed et al. (1), is one of the most common 

and reliable laboratory experiment for the estimation of unbound soils’ response to dynamic 

traffic loads. It aims to determine stiffness values at different stress levels that describe the 

nonlinear stress-strain behavior of soils under cyclic loading. Resilient modulus is simply the 

ratio of the dynamic deviatoric stress to the recovered strain under a standardized haversine 

pulse loading. Mechanistic design procedures for pavements and overlays require resilient 

modulus of unbound pavement layers to design layer thicknesses and the overall system 

response to traffic loads. In AASHTO specification T-274 (2) based on the mechanistic 

methods, resilient modulus is considered as an important design input parameter. After this 

specification, AASHTO TP46 (3), T292 (4), T294 (5) and T307 (6) specifications were also 

published as improvements were made over the years in the test procedures, the equipment 

configurations and the loading stress levels.  

The characteristics and behavior of subgrade, base and subbase soils have a major 

impact on the performance of flexible pavement systems. Pavement design based on field 

performance requires estimating realistic material properties that can simulate the in-situ 

behavior of unbound layers. Variation of resilient modulus at various critical in-situ stress 

states and loading conditions should be determined to evaluate the performance and 

reliability of empirical relations. Therefore, constitutive models were proposed to reflect the 

realistic behavior of the unbound pavement layers under repeated traffic loads. The 

relationship between the constitutive model coefficients and the index properties, such as 

particle size distribution, maximum dry- density, optimum water content levels and Atterberg 

properties, was also determined to evaluate resilient behavior of a specific soil type under a 

given stress state. 

Many nonlinear constitutive models have been proposed to describe the phenomenon 

of stiffness variations of unbound layers under different traffic loads. These models can be 

used to estimate resilient modulus variations at different depths of the pavement structure 

related to traffic loading. Elastic theory can be used to estimate stress and strain levels at 

different subgrade levels. Accordingly, many equations were developed to define the resilient 

response of unbound layers as a function of various stress variables as shown in the 

following examples: 

 

AASHTO Model (5):  MR = k1 )(θ k2       
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Uzan (Universal) (8): 
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where: 

MR = resilient modulus 

θ = 1σ + 2σ + 3σ  (bulk stress) 

k1, k2, k3 = regression coefficients 

dσ = 1σ  - 3σ = deviator stress 

3σ = confining pressure 

atmσ = atmospheric pressure 

σoct = octahedral normal stress =1/3 (σ1 + 2 σ3) = 1/3 (σd + 3 σ3) 

octτ = (1/3)[( 2

32

2

31

2

21 )()() σ−σ+σ−σ+σ−σ ] (octahedral shear stress) 

J2 = 1σ 2σ + 2σ 3σ + 1σ 3σ =2 3σ ( 3σ + dσ ) + 2σ  (second stress invariant) 

 

In this study, application of genetic algorithm (GA) and curve shifting methodology as an 

alternative to nonlinear constitutive models is investigated. The Uzan (Universal) model is 

used for comparison purposes since it is determined to be the most effective nonlinear 

constitutive relationship for the measured data in this study. Tests were conducted on a wide 

range of materials from various regions of Turkey in order to develop reliable correlation 

functions for resilient modulus. Resilient modulus tests were conducted according to 

AASHTO T307 specification (6). A total of 8 different soil types from different regions of 

Turkey were collected and 75 tests were conducted at four different compaction and water 

content couples which are: (1) Wopt – 100% compaction, (2) Wopt – 95% compaction, (3) 

(Wopt – 2), 100% compaction, (4) (Wopt + 2), 100% compaction. In addition, Atterberg limits, 

optimum water content, maximum dry-density and gradation characteristics of the specimens 

were determined. Soil types with different characteristics are chosen to obtain a prediction 

model with wide applicability. The experimental design for the laboratory resilient modulus 

tests is illustrated in Table 1.   

The general procedure followed to investigate the application and compare the 

efficiency of the curve shifting methodology is given below: 

 

1. Determine Uzan constitutive model coefficients (k1, k2, k3) (8). 
2. Using the GA, shift laboratory deviator stress vs. resilient modulus curves with 

respect to confining pressures by minimizing the residual sum of squares between 

the shifted curves and a gamma distribution function (12).  

3. Fit a gamma distribution function to the confining pressure levels vs. shift factor 
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data points (12). 

4. Develop Artificial Neural Network (ANN) models to determine resilient modulus 
at various stress levels for different soil types.  

5. Determine the critical stresses at subgrade level using the software KENLAYER 
(13).  

6. Determine critical resilient modulus values using the developed models (Uzan, 
curve shifting and ANN). 

7. Compare the prediction results for Uzan model and curve shifting with respect to 
ANN predictions. Predictions of the methodology with better fit to the data will 

be similar to ANN outputs.   

 

UZAN (UNIVERSAL) NONLINEAR CONSTITUTIVE MODEL 

Nonlinear stress-strain characteristics of subgrade soils can be effectively determined using 

resilient modulus tests. Performance prediction models directly rely on the parameters 

developed from constitutive models for each laboratory test. Constitutive relationships which 

represent the effects of stress-strain on subgrade soils are therefore extremely important in 

achieving effective results from calculation of pavement response under traffic loading (14). 

Inadequate constitutive models will decrease the predictive capability of performance 

prediction models. Although the Uzan constitutive model is capable of developing 

parameters which can effectively represent the stress-strain characteristics of coarse grained 

gravels with coefficient of determination values ranging from 0.97 to 0.99, parameter 

prediction for coarse grained sand and fine-grained soil test results is inadequate with 

coefficient of determination values ranging from 0.68 to 0.78 (15). Since these coefficients 

are used as inputs for the performance prediction models, estimations with large standard 

errors at the initial stages will cause error accumulation throughout the performance 

prediction process. In this study, an innovative methodology, curve shifting, is proposed as 

an alternative to constitutive relationships to reduce the effect of this type of problem.  

 For a typical resilient modulus test, the Uzan model (Equation 3) can be used to 

model the effects of stress on subgrade soils. The general nonlinear equation can be 

normalized as follows to perform linear regression to determine the model coefficients for 

each test: 
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After estimation of the nonlinear model coefficients, resilient modulus values at 

different stress states can be estimated. The deviator stress, confining pressure and bulk stress 

parameters at the top of the subgrade layer are determined based on the example pavement 

section characteristics, the elastic modulus values and the axle configurations using the 

layered-elastic program KENLAYER (13). The example pavement section and the 

representative axle configurations with the estimated critical stresses are given in Figure 1. A 

representative resilient modulus for a given test can be determined using this example 

pavement section’s characteristics, corresponding stress states and the constitutive model 

coefficients. Confining pressure, σ3, and deviator stress, σd, at the top of the subgrade are 
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determined to be 18.28 kPa and 38.21 kPa, respectively. Since these stress values are in the 

range of the stresses applied during the laboratory tests, resilient modulus predictions will not 

require any extrapolation errors. These stress values are going to be used throughout this 

study as representative values. However, analysis can also be conducted for different 

pavement structures and axle configurations. Resilient modulus for a given test can be 

determined using these stress values and the Uzan model coefficients determined from a 

certain laboratory test following AASHTO T307 specification (6) for one of the soils in 

Table 1(Kayseri 6/2, compaction at optimum water content) as follows: 

 

( ) 1440.02360.0

R
325.101

21.38

325.101

21.3828.183
05.693325.101M
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 +×
×=  = 79,202 kPa 

 

APPLICATION OF GA AND CURVE SHIFTING METHODOLOGY  

The GA is a method originally developed to evaluate the fitness of a population at the end of 

a number of trials (16). The method is based on the generation of new genes with the goal of 

improving the solution each time in order to achieve the best results at the end of each 

application.  The GA is a computer simulation of function evaluations where the analyst 

creates the environment in which the population must evolve. 

Planning and scheduling of construction projects, life cycle cost analysis, back-

calculation of asphalt layer moduli and pavement design are the primary applications of GA 

in pavement engineering. The GA has been used to predict the fatigue performance of asphalt 

pavements in recent studies (12, 17, 18). In addition,  Liu-Wang (19) used GA for the design 

of asphalt pavements. Kameyama et al. (20) also developed a methodology which uses the 

GA to backcalculate pavement layer moduli from falling weight deflectometer (FWD) 

measurements. In addition to these studies, Shekharan (21) used the GA to develop pavement 

deterioration models and Attoh-Okine (22) applied the GA for the prediction of the 

roughness progression in flexible pavements.  

Potential limitation of applying GA lies in the prediction of initial parameters and the 

population size. The length of the input interval range, the number of iterations and the 

number of discarded genes will have considerable influence on the computational time and 

precision of the results. A novice can increase the length of the input interval range while 

increasing the number of the iterations to avoid divergence from the actual solution, which 

will consequently increase the computational time. Thus, optimum number of iterations 

which will conserve the accuracy by keeping the computational time at reasonable levels 

should be determined before starting the model implementation.     

 In this study, the GA and curve shifting methodology is proposed as an alternative to 

conventional constitutive nonlinear models. Since these models present results that leave 

room for improvement for coarse-grained (sandy) and fine-grained soils, the application of 

the GA and curve shifting methodology is recommended for consideration for better 

estimation of the resilient modulus. The deviator stress vs. resilient modulus curves obtained 

from the laboratory resilient modulus tests were used to characterize the elastic response of 

unbound layers under repeated loads. Resilient modulus tests were conducted at three 

different confining pressure levels, 13.8, 27.6 and 41.4 kPa, which constitute three different 

curves. Figure 2a presents these curves for a single test conducted for a fine-grained 
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subgrade soil. In this study, a GA code written in software FORTRAN is used to determine 

feasible horizontal shift amounts for the deviator stress – resilient modulus curves in order to 

obtain a final gamma distribution curve which describes the resilient response as a function 

of deviator stress. The main purpose in conducting the nonlinear fitting of data is to find a 

suitable function that can describe the relationship between the resilient modulus and the 

deviator stress at various confining pressures. 

 

 The general procedure for the application of the GA is as follows: 

 

1. Interval Prediction: Potential shift amounts (S1 and S2) are determined by the 
analyst using the plots of deviator stress vs. resilient modulus. As the uncertainty 

about the possible shift amounts increases, the length of the intervals should be 

extended while increasing the number of iterations in order to decrease the estimation 

error. 

2. Gene Pool Generation: Gene pools are obtained by generating uniformly distributed 

random variables within the estimated shift intervals (80 numbers are generated for 

the S1 and S2 prediction intervals). 

3. Fitting: For each gene in a gene pool, the derivative quantities S1 and S2 are   
determined and then the deviations of the predicted values from the measured data are 

evaluated using the fitness function. Fitted resilient modulus values are estimated 

based on the gamma distribution functions. The fitness function of the GA for the 

estimation of the shift amounts is basically the residual sum of squares (RSS) 

function which expresses the goodness of fit between the measured (test results) and 

predicted (fitting function) data points (12).      

 

RSS = 2

ii )ŷy( −              (7) 

where yi is the measured resilient modulus and iŷ  is the predicted resilient modulus. 

 

4. Ranking: The genes in the gene pool are ranked according to their RSS values.  

5. Mating and Discarding: The ranked genes are mated in order to decrease the effects 

of bad genes. The last half of the genes with higher RSS is discarded. These discarded 

genes are then replaced with the new genes by returning to Step 2. The required 

number of iterations depends on the level of uncertainty about the possible shifting 

amounts in the data set and the required accuracy of the test parameters.  

 

 After the most effective shift values are determined using the GA by minimizing the 

RSS between the actual test results and the fitting function, the parameters of the fitting 

function are determined by using the “nls” function available in the software S-PLUS (23). 

The final structure of the shifted curves and the application of curve fitting are illustrated in 

Figure 2b. The following gamma distribution function is used for the correction of the 

deviator stress and confining pressure effects for unbound materials: 
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where A, B and C are the function parameters, m is an index number and x is the modified 

deviator stress.  

 

Shift amounts determined from the GA application are also modeled using gamma 

distribution function following the development of the shifted deviator stress vs. resilient 

modulus curves. The final gamma distribution function developed to model the confining 

pressure vs. confining pressure shift factor curves is given in Figure 2c. The confining 

pressure shift relationship for the fitting functions is given as follows: 

 

( )



















 σ−σ
−−=

E
exp1.Da

)ref(33

T                                                                          (9) 

                                        

where σ3(ref.) = 27.6 kPa (reference), D and E are function parameters and aT is the confining 

pressure shift factor in kPa. 

 

x = σd + aT                                            (10)     

 

where x is the modified deviator stress. 

 

 For a given test, resilient modulus values at different stress states can be determined 

by using Equations 8-10 with the coefficients estimated as described above. Resilient 

modulus values are only associated with the deviator stress where the effect of confining 

pressure is also considered during the analysis. The procedure for the estimation of the 

resilient modulus related to confining pressure and deviator stress is quite promising since 

the effects of other parameters on the resilient modulus variation are relatively small when 

compared with the confining pressure and deviator stress effect for a single test.  

 

Demonstration Example 

The deviator stress and confining pressure at the top of the subgrade of an example pavement 

section is determined in the previous section (Figure 1). At the top of the subgrade, the 

deviator stress is estimated to be 38.21 kPa when the confining pressure is 18.28 kPa. 

Deviator stress and confining pressure effects are corrected by the application of the 

following procedure for a typical test result and the resilient modulus at the top of the 

subgrade is determined by using the coefficients of the gamma distribution functions. 

Backward estimation of the resilient modulus is performed as follows:  

 

1. Determine the difference between the reference (27.6 kPa) and the test confining 
pressures.  

 

σ3 – σ3(ref.)  = 18.28 – 27.579 =  -9.299 

 

2. Obtain the confining pressure shift factor.(Equation 9) (Figure 2c) 
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3. Determine the modified deviator stress. (Equation 10) 
 

x = σd + aT = 38.21 + 29.369 = 67.579 kPa 
 

4. Determine the resilient modulus at a given confining pressure and deviator stress 
using the calculated modified deviator stress (Equations 8). 
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The final estimation results are shown in Figures 2a and 2b.  

   

COMPARISON OF CURVE SHIFTING METHODOLOGY AND UZAN 

CONSTITUTIVE MODEL USING ANN PREDICTIONS 

ANN is a special type of computational model which was inspired by the information 

processing in biological systems. The power of ANN applications is a result of the hidden 

layer neurons that are used for processing and transferring information between the model 

inputs and outputs. Links between the layers carries different weights which indicate the 

strength of connection between the layers. In this study, one hidden layer is used for ANN 

model development since the number of input parameters and the complexity of the problem 

do not require the use of many hidden layers (24). The most successful ANN modeling 

approach for the pattern recognition is accepted to be the feed-forward neural network which 

is also the one used in this study (25). In addition, an error backpropagation algorithm which 

is based on the evaluation of the error function by sending information forwards and 

backwards in the network is also used to improve the predictive capability of the ANN 

models. In this study, the logistic sigmoid function type is selected as the activation function 

because of its superiority to other function types, such as linear and threshold functions (26). 

Linear combinations of fixed nonlinear basis functions are used to develop the ANN 

frameworks which can be explained by the following relationship (25): 

 

( ) ( )







φ= ∑

=

M

1j

jj xwfw,xy             (11) 

 

where f(
.
): identity function 

           φj(x): basis function 
           wj: model coefficients 

           M: total number of parameters in the model 
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Basis functions are the nonlinear functions which are formed by using linear 

combinations of the model input variables. The basis function in the model, φj(x), depends on 
different parameters which are simultaneously adjusted using model coefficients. This 

adjustment process is called “training”. Different types of activation functions can be used 

based on the characteristics of the problem. In this study, the following logistics sigmoid 

function is used to scale continuous arguments: 

 

xe1

1
)x(S

−+
=            (12) 

 

 In this study, ANN model predictions are used to compare the performance of the 

Uzan model and the curve shifting methodology. Although ANN models are highly effective 

in predicting resilient modulus for different stress states and different soil types, they cannot 

be used to determine the stress-strain dependency (constitutive relationship) of a test 

specimen for a single test. Model parameters, such as the Uzan and curve shifting method 

model coefficients, which represent the effects of stress on a single test specimen, should be 

determined to develop performance prediction models. In addition, ANN models do not 

provide insight into resilient behavior nor help understand values for soils other than those 

actually tested. Therefore, in this study, ANN models are only used for the prediction of 

resilient modulus, without extrapolations, at different deviatoric and confining stresses. ANN 

model cannot be generalized to estimate resilient modulus of coarse-grained (sandy) and 

fine-grained soils which are out of the range of the empirical training set.    

In this study, different soil index parameters and stress variables were used to develop 

ANN models to evaluate the resilient response of subgrade soils (Table 2). Input variables 

used for the analysis were determined by performing different types of soil index tests. In 

addition, 5 deviator stress levels and 3 different confining pressures are applied during a 

certain resilient modulus test to evaluate resilient response of the material. As a result, the 

complete dataset for the ANN application is composed of 1,125 data points (75 tests ×  15 
stress couples). It was observed that ± 2% variation in the compaction water content (Wcc) 
has a considerable effect on the resilient response of the material. In addition, optimum water 

content (Wopt), maximum dry-density (γdmax), plasticity index (PI) and percent passing 
number 200 sieve (PP200) were determined to be effective parameters for ANN model 

development. 

Despite its superior prediction capability within the original dataset, ANN models 

have certain disadvantages which need attention during the analysis. Overfitting, low 

extrapolation capability and their nonparametric nature are accepted to be the most important 

problems (25). In this study, these concerns are minimized by applying different methods. 

The overfitting problem is minimized by performing analysis to determine the optimum 

number of hidden nodes which can effectively represent the input-output relationships 

without causing any generalization problems. Models with different number of hidden nodes 

are developed and variation of the error is monitored for each application. Twenty percent of 

the data points are randomly selected and not used for the ANN model development. The 

ANN model is developed using the remaining eighty percent and the predictive capability of 

the final model is tested using the validation dataset which includes twenty percent of the 

data points. The accumulated error for the ANN development will always decrease by 

increasing the number of hidden nodes in the network. However, the accumulated error for 
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the validation dataset predictions will increase after a certain level. In this study, the optimum 

number of hidden nodes was determined to be 6 since the most effective predictions for the 

validation dataset can only be achieved at that level. The number of nodes vs. error (1-R
2
) 

plot which is used during the decision process is given in Figure 3. 

The extrapolation capability of the ANN model is monitored by using the prediction 

profiles for each input variable. The 95% confidence intervals for the mean response, 

resilient modulus, and the variations in intervals by changing the input variables are 

determined by using prediction profiles (Figure 4). The effect of overfit penalty on the 

prediction capability of the ANN model is illustrated in Figure 4. Increasing the overfit 

penalty value from 0.001 to 0.016 decreases the size of confidence intervals without causing 

important effects on the accumulated model error. Thus, the ANN model developed using the 

0.016 overfit penalty and 6 hidden nodes is selected as the final model for resilient modulus 

prediction. The architecture of the ANN used for prediction of resilient modulus is given in 

Figure 5. It is noteworthy that changing the levels of the input variables can affect the size of 

the confidence intervals. However, the shape of the model curve for each input variable does 

not change by varying the levels of the input variables. In addition, the size of the confidence 

interval for the response variable does not exceed certain levels at the extremum values of the 

input variables, which avoids the extrapolation problems for the ANN model. The effect of 

each parameter on the variation of the resilient modulus is also monitored by using the 

prediction profiles which avoids the possible problems arising from the nonparametric nature 

of the ANN models. Comparison of the measured and ANN predicted resilient modulus 

values show that the ANN model for resilient modulus prediction is quite satisfactory with a 

coefficient of determination of 0.89. The coefficient of determination for the linear regression 

model developed by using the same input parameters is only 0.71 which emphasizes the 

power of ANN applications.                 

 

COMPARISON OF UZAN CONSTITUTIVE MODEL AND CURVE SHIFTING 

METHODOLOGY USING NEURAL NETWORK PREDICTIONS 

This part of the paper focuses on comparison of the Uzan model and the curve shifting 

methodology for resilient modulus prediction of subgrade soils at different stress levels. 

Resilient modulus values for each test were determined based on the stress levels estimated 

for the example pavement section (σ3 =18.28 kPa, σd = 38.21 kPa) illustrated in Figure 1. 
Since these stress values are in the range of the stresses applied during the laboratory tests, 

interpolations will not cause any problems. Results of the analysis indicate that the resilient 

modulus values predicted from the curve shifting methodology are nearly identical to the 

ANN model predictions with a coefficient of determination of 0.96. However, predictions 

performed by using the Uzan model present higher deviation from the ANN model 

predictions with a coefficient of determination of 0.82 (Figure 6). Coefficient of 

determination values for the Uzan and curve shifting methodology predictions are separately 

calculated based on the regression fits with respect to ANN predictions without an intercept 

parameter. Based on the results of the analysis, it is concluded that curve shifting 

methodology is superior to the Uzan model in terms of the representation of the stress-strain 

dependency of subgrade soils.  
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SUMMARY AND CONCLUSIONS 

In this paper, the application of a novel approach, the GA and curve shifting methodology, as 

an alternative to nonlinear constitutive models was investigated. A total of 8 different soil 

types from different regions of Turkey were collected and 75 triaxial tests were performed 

under various conditions. Specimens were compacted at 3 different water content and 2 

different compaction levels. Laboratory tests were conducted at 5 deviator stress levels and 3 

different confining pressures to evaluate resilient response of the material. Coefficients for 

the Uzan constitutive model, which is accepted to be the most effective model, were 

determined for each test to evaluate the stress-strain dependency of the specimens. In 

addition, parameters for the curve shifting methodology were determined to compare its 

effectiveness with the Uzan model. A representative pavement section similar to existing 

highway structures in Turkey was analyzed and the critical stresses at the top of the subgrade 

for a typical axle configuration were determined. These critical stresses were integrated with 

the Uzan and curve shifting models to determine resilient modulus values for different 

subgrade soil types. Predicted resilient modulus values from each method were separately 

compared with ANN model predictions to compare their efficiency and reliability in terms of 

resilient response prediction.  

Results of the analysis indicated that curve shifting methodology gives superior 

estimates with a coefficient of determination 14% higher than the Uzan model predictions 

when the results were compared with the ANN model outputs. Thus, application of GA and 

curve shifting methodology is proposed as a promising technique for the evaluation of 

subgrade soils’ stress-strain dependency.      

Results of the analysis further indicated that a 2 % variation in the water content 

during compaction highly affected the resilient moduli. In addition, plasticity index (PI), 

percent passing number 200 sieve (PP200), maximum dry-density (γdmax) and optimum water 
content (Wopt) parameters were observed to be effective variables for resilient modulus 

predictions. ANN models developed by using these important index properties and the stress 

levels appear to be effective tools for the prediction of the subgrade soils’ stress-strain 

dependency within the range of the empirical training set. The predictive capability of the 

ANN models can be improved by selecting the effective overfit penalty values and 

monitoring the results on a randomly generated validation dataset. However, since ANN 

models do not provide insight into resilient behavior nor help understand values for soils 

other than those actually tested, they are not recommended as effective resilient modulus 

prediction tools for the subgrade soils which are out of the range of the empirical training set. 

Computational time is accepted to be an important problem for the GA applications. 

However, for this particular case, it is observed that model run times are considerably low 

since no serious calculation is involved in determining the curve shift amounts. Therefore, a 

novice can intuitively select a wide initial interval range in order to optimize the shift 

amounts by increasing the number of iterations. Because computational time does not appear 

to be an obstructive issue, this simple algorithm can be integrated with layered elastic 

programs. Deficiencies in layered elastic approach to determine the nonlinear stress-strain 

dependency of unbound pavement materials can be minimized by calibrating their outputs 

with the curve shifting methodology. In addition, models proposed in this study can be 

integrated with mechanistic empirical design programs after the model parameters for each 

representative case are calculated with GA and curve shifting methodology. Thus, the 

computational inefficiency of GA will not be an issue with the available model parameters.     
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Although the results obtained from this study are impressive, further study is required 

to develop prediction models for each coefficient of the curve shifting model to determine 

their variation related to soil index parameters. Resilient response of different subgrade soil 

types can be predicted based on these model coefficients and curve shifting methodology. In 

addition, the effect of confining stresses on resilient response can be evaluated based on the 

curve shift amounts.    
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  TABLE 1 Experimental Design for Laboratory Resilient Modulus Testing 

Number of Tests 

C 100% 
C 

95% 
City Region 

 

 

Unified AASHTO 

opt-2 opt opt+2 opt 

PP200 

(%) 

PI 

(%) 

Wopt  

(%) 
maxdγγγγ  

(gr/cm
3
)  

6/2 SM A-7-5 2 3 2 2 48.3 13.8 19.2 1.702 

6/5 SM-SC A-2-4 2 4 3 2 33.0 NP 15.8 1.780 

6/6 SM A-2-7 3 3 2 2 18.3 21.2 28.4 1.436 
Kayseri 

 

 6/7 SM A-5 2 3 2 2 48.5 9.7 24.8 1.478 

Diyarbakir-

Bismil 
9/17 CH A-7-6 2 3 3 2 83.7 37.3 22.5 1.599 

Diyarbakir-

Silvan 
9/3 MH A-7-6 2 3 2 2 76.1 24.9 22.8 1.590 

Diyarbakir 

Kiziltepe 

Viransehir 

9/6 CH A-7-6 2 3 2 2 94.2 28.8 25.8 1.527 

Ankara 

-Cankiri 

- 

 
SC A-6 2 2 2 2 41.3 21.6 14.8 1.844 

    - : data not applicable 

   Note: PP200: Percent passing No. 200 sieve                     C 95% : 95 % compaction 

              PI: Plastic Index                    C 100% : 100 % compaction 

              Wopt: Optimum Water Content                                  opt-2: compaction performed at (Wopt -2)% water content level 

              γdmax: Maximum dry-density     opt: compaction performed at (Wopt)% water content level 

              NP: Non-plastic      opt+2: compaction performed at (Wopt+2)% water content level 
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TABLE 2 Ranges of Soil Index Parameters and Test Stress Levels  

Variable Type Symbols Description Range 

 

Dependent 

 

MR 

Laboratory resilient 

modulus for varying stress 

states 

12823 – 198640 (kPa) 

σ3 Confining pressure 13.790 - 41.369 (kPa) 

θ Bulk stress 53.964 - 199.631 (kPa) 

σd Deviator Stress 13.790 - 68.948 (kPa) 

Wopt Optimum water content  14.80 - 29.60 (%) 

γdmax Maximum dry - density 1.404 - 1.844 (Mg/m
3
) 

PP200 Percent passing #200 sieve 18.3 – 94.2 (%) 

PI Plasticity index 0 – 37.3 (%) 

 

 

 

 

Independent 

Wcc Category covariate for 

compaction level 

Compaction at 

opt-2 %, opt, opt+2% 
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FIGURE 1 Example pavement section characteristics. 
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FIGURE 2 (a) Deviator stress vs. resilient modulus curves at three different confining 

pressures (b) Final gamma fitting curve for the representation of the shifted test results  

(A = -0.3978, B = 13.9146, C = 11.1878 (Eqn. 8)) (c) The relationship between confining 

pressure and confining pressure shift factor (Eqn. 9). 
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FIGURE 3 Variation of ANN model error (1 – R
2
) by increasing number of hidden 

nodes (R
2
: coefficient of determination for the ANN model). 
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(c) 

 

FIGURE 4 Effect of overfit penalty on ANN models predictions:  

(a) Prediction for model with overfit penalty = 0.001, number of nodes = 6, 

R
2
model=0.889, R

2
validation=0.867  

(b) Prediction for model with overfit penalty = 0.008, number of nodes = 6, 

R
2
model=0.890, R

2
validation=0.870 

(c) Prediction for model with overfit penalty = 0.016, number of nodes = 6, 

R
2
model=0.886, R

2
validation=0.869.  
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  FIGURE 5 One layer ANN architecture for prediction of resilient modulus. 
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(a) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(b) 

 

FIGURE 6 Comparison of Uzan model and curve shifting methodology predictions 

using ANN model predictions (a) Comparison of curve shifting methodology with ANN 

model predictions (R
2
 = 0.96) (b) Comparison of Uzan model with ANN model 

predictions (R
2
 = 0.82).  
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